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Enhancement of the energy resolution in ion-beam experiments
with the maximum-entropy method
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In ion-beam experiments with MeV ions, the energy resolution of the detector and the energy spread of the
incident ion beam restrict the energy and depth resolution. It is possible to deconvolve the measured spectra if
the energy transfer function of the apparatus is known. However, this leads to an ill-posed problem. The
Bayesian probability theory allows one to tackle consistently such types of problems. Using the maximum-
entropy prior, it is possible to obtain the probability distribution for the desired energy and depth profiles. An
enhancement of the energy resolution by a factor of 8 in Rutherford backscattering analysis of thin films,
resulting in an energy resolution of about 2.5 keV with semiconductor detectors, is obtained.
[S1063-651X97)09006-3

PACS numbgs): 02.50—r, 07.05.Kf, 79.20.Rf

I. INTRODUCTION excitation and ionization and nonelectronic energy losses by
energy transfer to silicon atoms. Due to this statistical nature
In most ion-beam experiments, semiconductor detectorsf electron-hole pair creation, the physical limit for the reso-
such as silicon-surface barrier detectors or particle-implantettion of PIPS detectors without a dead layer would be about
and passivated silicofPIPS detectors are used for the de- 6 keV FWHM for 3-MeV “He particles[2]. For detectors
tection and energy analysis of backscattered or recoiled paWith a dead layer, an energy resolution of about 8 keV
ticles. Semiconductor detectors are small, relatively cheag; WHM was achieved?2], which is quite close to the physi-
and easy to use. The introduction of semiconductor detectof@®! limits. _
has made ion-beam analysis a powerful and widely used A much l_Jgtter energy resolution of the order of
method in material analysis. However, the major disadvan®E/E=5X10"" can be obtained with a magnetic spec-

tage of semiconductor detectors is their limited energy resot_rograph, such as the Munich Q3D magnetic spectrograph

lution, typically of about 12—15 keV full width at half maxi- Lo HOWever, a magnetic spectrograph is lafgethe range

mum (FWHM), thus limiting the mass and depth resolution of meter§ and therefo_re EXpensive. _
o ; The different contributions to the energy broadening can
in ion-beam experiments.

. S be summarized in a transfer function of the whole system:
The apparatus-induced energy resolution in ion-beam ex-

periments is determined big) the energy resolution of the the apparatus funcnqn. The measured spectrif) is
detector;(b) the electronic noise of the detector-preamplifierg'ven by the convolution
system;(c) the energy spread of the incident beam; #aid "
the kinematic energy spread due to geomésnlid angle of 'F(E)=f f(E')A(E—E’)dE’, 1)
detection, beam spot siz€The electronic noise contribution *
of the detector-preamplifier system is typically about 5 keV _ .
for a weII—desing:ed sthem, b)[Jt can beyIF())wer)éd to about O.E’heref(E) IS the spgctrgm_ that would be me.asured W.'th an
keV with a cryogenic detector-preamplifier systéi. The ideal system with no intrinsic energy broadening ME). IS
kinematic energy spread can be reduced by a small beame apparatus function. If(E) and A(E) are knOV\{n, It is
spot size and a small detector solid angle. A small solidimple to calculate the measured spectrfi(i). This con-
angle, however, increases the fluence and time necessary fgplution is performed by all programs for the simulation of
a measurement with sufficient statistics, so that some conf?ackscattering spectra, suchrasvp [4]. Mostly, a Gaussian
promise has to be accepted. The energy spread of the inciPParatus functlon_ is used. The variance of the Gaussian is
dent beam is hard to determine, but can be assumed to be 8fjusted for best fit to the measured spectrum. _
the order of abouhNE/E<5X 1073, The reverse and more interesting way, however, i.e., the
The major contribution to the energy broadening visibledetermination of the deconvolved spectrifE) from the
in experimentally determined spectra is due to the semiconmeasured spectruh(E) and the apparatus functioh(E),
ductor detector. For an ideal detector, the statistical distribuis not trivial at all. This problem is ill-posed, and some form
tion of the output pulses would have zero variance for inci-of regularization is needed to recoviE). A recently pub-
dent monoenergetic particles with enerdy,. Due to lished paper for resolution correction of Rutherford back-
electronic energy-loss straggling in the dead layer of the descattering spectroscogiRBS) spectra reviews the quality of
tector, thickness variations of the dead layer, and the statists few methods for dealing with inversion problefd. A
tics of electron-hole pair creation, the response function of a&onsistent probabilistic theory to obtain unbiased results
semiconductor detector always has nonzero varig2icdhe  from incomplete or noisy data is provided by the Bayesian
particle energy is statistically distributed between electronigrobability theory. Often, it is called the maximum-entropy
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(ME) method, though the Bayesian calculus is the correcThe historical terms “posterior” and “prior” have a logical,
theory for logical inference and ME is important for assign-rather than a temporal, meaning. They simply mean “with”
ing prior probabilities. The Bayesian probability theory, with and “without” the new data taken into account. The Bayes
the ME method, has become a powerful and widely used todheorem is a consequence of the two forms of the product
in image processing and data analysis during the past temle P(AB|C)=P(A|BC)P(B|C)=P(B|AC)P(A|C),
years[6—10. We have used the ME method for the decon-whereA, B, andC are propositions. The theorem is funda-
volution of measured RBS to improve the energy resolutionmental to all scientific work, as it provides a formal rule for
updating knowledge in the light of new data or learning from
observations. In the Bayesian probability thegoypbabili-
Il. BAYESIAN PROBABILITY THEORY ties are not frequenciesalthough frequency arguments are
AND MAXIMUM ENTROPY often important for assigning priors and frequency estimates

The direct inversion of the intrinsic spectruitE) is an  can be derived from Bayesian probabilities.
ill-posed problem if the eigenvalue spectrum of the apparatus_ 1 "€ Probability densityP(d|l) is a normalization con-
transfer functionA varies over orders of magnitude. A com- Stant because the problem is formulated for given data. The

monly used approximation is a Gaussian transfer functionl,'ke“hoc’d function describes the error statistics of the ex-

which illustrates the ill-posed nature of the problem. ThePeriment. In the present case ofaco_untin_g experimer_lt Wi.th a
direct inversion leads to meaningless results, since the statild'9€¢ number of counts, we are dealing with a Gaussian like-
tical error of the experimental data is amplified by the in-'no0d function,

verse of the small eigenvalues, which results in artificial

structures and even negative RBS intensities in the decon- P(d|f,o,1)= 1 exd — EXZ) 3)
volved spectrum. To overcome this problem and to separate Y HN" o 2 '
the signal from the noise, the statistical nature of the error i=1 NeTTi

has to be taken into account properly. We want to find the
most noncommittal reconstruction compatible with the datawhere

A self-consistent mathematical tool for this task is given N N )
by the Bayesian probability theory, which provides a general 5 { di— 252 1A _Ja
and consistent frame for logical inference. The Bayesian e\ e giT d;.
probability theory allows one to exploit any type of testable
information, such as noisy experimental data, expectatiomhe uninformative priorP(f|l) for a PAD is the entropic
values, positivity constraints, or other forms of prior knowl- prior
edge. An important class of problems comprises the determi-
nation of positive and additive distributigAD) functions, 1
such as the RBS spectrum. The most uninformative prior for P(fla,l)= > exp(aS) 5
a PAD is the entropic priof11]. The Bayesian probability
theory combined with the entropic prior is referred to as N f
quantified maximum entropyQME), which has been ap- s=> f,_m,_f,m(_l
plied successfully to various data-analysis probl¢fisl(]. = o m
The mathematical and numerical details of the QME proce-
dure are explained in great detail[i@]. Here, we will merely ~ Where S is the information-theory entropy or information
outline the key ideas of the QME procedure and introduce &livergence relative to the default moae]. The prior has to
recently developed advantageous extension of QMEbe normalizedZ=[d"fP(f|a,l). We use an uninformative

4

a;j

) : (6)

namely, the adaptive kernel method. flat default modelm; =c, where the most probable value for
The goal is to determine theosterior probability density ¢ is given by minimizingx?. The regularization parameter
P(f|d,o,1) for the RBS spectrunf; at theN energiesE;, a is a nuisance parameter that has to be marginalized

given N4 experimental datd, , the respective errors;, and ~ P(f|l)=/daP(f|a,l)P(a), where the uninformative prior
further prior knowledge summarized in The notation with  for « is given by Jeffreys’ prioP(a)=1/a. A commonly
the vertical bar denotes conditional probabilities, based otsed method of handling this improper prior is the evidence
either empirical or theoretical information and further back-approximation with the steepest-descent meflidd12. Re-
ground informatiorl. The posterior probability density rep- cently, we showed that for some inversion problems the cor-
resents all the information necessary to decide how reasofiect marginalization of @ in some sensible range,
able a solutionf; is. It allows one to determine many [@min.@maxd. is compelling[10].
quantities of interest, such as the posterior mode resulting in In addition to the properties of a PAD, the background
the most probable solution, the mean(f;) knowledgel summarizes model assumptions, such as the
= [f;P(f|d,a,1) d"f, confidence intervals, etc. The Bayes discretization scheme of the spectrum. The discretization
theorem relates the as yet unkno®(f|d,o,1) to quantites Scheme accounts for the smallest local resolution possible.
that are known, namely, thikelihood probability density The number of grid cells defines the number of degrees of
P(d|f,o,1) and theprior probability density Rf|l), via freedom(DOF) of the image parametrization. To be sure not
to lose information, a sufficiently fine grid has to be chosen.
A disadvantage of a fine grid is the overfitting of the data
P(f|d,01) = P(d|f,o,)P(f]) (2  noise. Accordingly, the grid has to be incorporated into the
T P(d|I) Bayesian analysis, either by choosing the best grid via model
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selection or by marginalization over all possible grids. It is In the Bayesian approach, the nuisance paraméteirsd
expected that the solution has local smoothness and strub-have to be marginalized:

tures only if they are supported by the data. A smooth solu-

tion is expected when arbitrary permutation of the célls F’(f|d,0’,|)=J d¥h d¥b P(f,h,b|d, o, 1)

results in loss of information. This is definitely the case for

RBS spectra or, in general, for any image. Alternatively, in-

stead of searching for the optimal cell size distribution we MJ dVh dVb 8(f—B*h)P(d|h,b,0,1) (9)
may achieve smoothness on a fine grid by introducing cor-
relations between neighboring cells. Though the DOF remain % P(h|b)P(b). (10)

unchanged, the effective DOEDOB are reduced. A mea-

sure of the eDOF is given below. Spatial smoothing as @or the prior probability densitf?(h|b), we use the entropic
regularizing technique is often applied to ill-posed inversionprior as was previously done fdr[15],
problems by adding a functional containing some derivative \

of the solution multiplied by a Lagrange parameter to the a |12

misfit x2, e.g., x>+ A Jf”(x)?dx. One has to find a criterion P(h[b,a)=P(h|a)= H (m) exfas(h)],

for choosing the strength of the regularizatinn But the (11)
existence of exactly one “optimal’n is not rigorous. In

addition, the optimal depends on the subdivision of the With the entropy

spectrum. For example, the strength of regularizaioof a N

spectru_m with an intense narrow pea_k anq a weak broader S(h)=2 hi_mi_hiln(ﬁ)- (12)
peak differs from the result obtained if we join the regular- i m;

ized two spectra, each with one peak. In the Bayesian prob-

ability theory, such a regularization parameter is a nuisancdlote the measure™h/IT;hi*?, which has to be applied to
parameter that has to be marginalized. Furthermore, instedategrals of the probability ovenh space[15]. The prior is

of using a constant overall smoothing property, we need loindependent ofb and ensures positivity irf. As shown

cal smoothness, which allows a high smoothness level i@P0Ve, the regularization parameterhas to be marginal-
unstructured regions of the spectrum where only backgrountf€d- For simplicity, we use the historic ME approach, where
occurs, and a low smoothness level where structures aris@. 1S chosen such th?@Z/Ndml [16]. In our earlier papers, it
Local smoothness of the imadds not included in standard IS s_hown that h|stor_|c ME prov@es qu|§e the same regular-
ME methods because the entropic prior contains no correl zation compared W'.th the marglnal|zat|onlov(er whereas
tion between the cells. An arbitrary permutation of the cells he evidence approximation tends to over-fit the §a®. At

: ; any rate, we observed that the importance of the prior is
results in the same entropy, whereas the speclooks quite . .
different strongly reduced when using the adaptive kernel approach.

We | h dnth h luti ¢ The range over whiclx has to be varied to observe signifi-
_ Ve IMmpose Smoothness anthrough a convolution ot a changes in the image exceeds by far the differences of
hidden densityh with a smoothing kernel functiond: « of the various approaches.

The prior probabilityP(b) has to reflect all the informa-
x—y tion we have about the kernel widths We know the scale
= it of b: the upper limitb, of each kernel widtlb; is given by
fo0 fdyB( b(y))h(y)' @ the total image rangéoverall smoothing and the lower
limit b, is given by the value ob;, which gives negligible
contributions to neighboring image celiso smoothing In
Note that the local kernel widtib(y) varies withy. The  addition, we favor a blur width distribution where blur
shape and width distributio(y) of the kernelB have to be  widths from neighboring cells differ by no more than one
determined by Bayesian methods. Knowing the norma”zace” width. Otherwise the data would be artificially Separated
tion, the mean, and the standard deviatiorBofthe kernel ~into background and signals, although in some cases this
functional form has to be Gaussian according to the MEMay be advantageous. This also enforces smooth variations

12
hi

principle [13]: in b. We chose the Gaussian prior for the derivativebof
measured in cell units, with a standard deviation of one for
be[b,,by]:
B(x—y) 1 p[ 1(x—yﬂ ® ,
= exg — =l =1 |- - _h
b(y))  \2=b(y) 2\ b(y) P(b) exr{ 0-52 (bi—=bi—1)% (be[by,by])
0 (elsewherg
(13

We do not expect the shape of the kernel functional to matter

greatly, but in some applications the infinite range of a The Bayesian analysis yields the entire probability distri-
Gaussian may not apply. For example, if we expect sharpution (10), which is, however, somewhat complicated due
edges in an image, the prior information would favor a com-to the presence of thé function. This is of minor impor-
pact kernel, such as a truncated paralpa!d. tance, since our interest usually focuses on expectation val-
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ues of some functional df, for example, the posterior mean Occam'’s razor is the volume of the prior probability covered
(f) and the posterior varianggAf)2). Though the evalua- by the high-likelihood regiorf19]. Two cases have to be
tion of the multidimensional integrals is cumbersome, thisdistinguished: The models differ in the number of parameters
can be tackled by Monte Carlo importance samplseg, for  (DOF), e.g., the number of grid cells, or the models have a
example[18]). Alternatively, the different natures &f and  constant DOF but differ in the values of additional model

b can be exploited and the integration oveandb can be  parameters determining the eDOF, as in the present case of
split. The hidden imagen represents the signal intensity, the adaptive kernels with the additional parameters the
whereas the set of kernel widths characterizes the com- former case, the prior probability density of the parameters
plexity of the model. This can easily be seen in the limitsgepends on the manifold of the parameter space, where the
b— o andb— 0. Forb— =, the image is described solely by prior decreases as the DOF increases. In the latter case, the
the mean of the density with an eDOF of one, whereas, for volume of the hypothesis space is constant. Neglecting the
b—0, the kernel goes into th& functional, which results in  entropic contribution, Occam’s razor is determined by the
f(x) =h(x). We obtain the conventional result where the im-vyolume of the likelihood-probability density, which depends
age is reconstructed pointwise with an eDOFNf Blur  implicitly on the model parameters. In the adaptive kernel
widths between the two limits result in local smoothing with approach, the DOF is given by the number of image cells

locally varying eDOF. N and the model parametebsdefine the complexity of the
A measure for the eDOF of the model parameters  model (eDOP. The volume of the prior probability covered
given by by the high-likelihood region is already calculated in Eq.
(17). The B'B-term in the Hessian reflects the smoothing
eDOF= Y, \eigenvalugB'B). (14)  power of the adaptive kernels. The determinanttbfde-
I

creases as the kernel widths increase.
. ) o We are mainly interested in the posterior expectation
The largest eigenvalue is one, due to normalizatioB.dfor  (f,) and point estimates of the variance of the posterior prob-
b—0 the eDOF isN and forb—c the eDOF is one. The gty density varf,) = (f2) —(f,)2. The variance describing
large 'e!genvalues define elgenvectqrs that are es§ent|§1l f?ﬁe uncertainty of the image is correlated with the kernel
describing the data, and the small eigenvalues define eigegiqi Tq illustrate this, consider a mock data set, consisting

vectors de_sqribing insignificant_ contributio_ns due to _noise. of N samples of a constant, distorted by a constant noise
The splitting of the integration is readily done with the o0/ ;- " the limit b—0, where no smoothing occurs, the

eviden(_:(_a approximatio[ﬂl,l_z, whic_h can be applied if 'the variance of the uncorrelated image pointssfs In the limit
probability for the kernel widths, given the daR{bld), is )", \here overall smoothing occurs, the data is described

strongly peaked at some valbe P(b|d)~ 6(b—b): by the mean value, and the variancesN (the variance of
the meain Between the two limiting cases, the variance is
P(fld,gll)ocf dh 5(f—B*h)P(d|h,b,o,1)P(h]|I). approximately given byr?/b. Thus, unstructured data re-
gions that can be described with large kernel widths result in

(19 reconstructions with a low error level.

To summarize the ingredients of the reconstructing proce-
dure in the Bayesian framework, we have to start with the
Bayes theorem, assigning the likelihood probability from the
error statistics of the experiment and the prior probability for
h,b)P(h)P(b). (16)  a positive additive distribution. In addition, we have to intro-

duce the adaptive kernels, to take into account our back-

The multidimensional integrals are routinely determined byground information about the correlated cells. The nuisance

the steepest-descent approximation, whef@(th,b)P(h)] parameters have to be marginalized. The numerical calculq—
. . s tions are rather cumbersome, but do not exceed the experi-
is expanded up to second order about its maxinfunthe

! o . mental efforts.
resulting Gaussian integral yields

The optimal kernel width$ are determined by maximizing
the marginalP(b|d):

P(b|d)ocf d"h P(d

~ - 1
P(b|d)~P(b)P(d[h,b)P(h)det zH, (17 IIl. EXPERIMENT
whereH is the Hessian of [rP(dlh,b)P(h)].. In the present The following measurements were performed at the 2.6
case of a linear modetj=A*f, the Hessian can easily be MeV Van-de-Graff accelerator at the Max-Planck-Institut fu
calculated: Plasmaphysik in Garching. The incident beam of 1.5 MeV or

2.6 MeV “He was collimated to 080.5 mn?. Backscat-
tered particles were detected at a scattering angle of 165°.
) A The solid angle of the detector is 1080 2 sr. A standard
Given the mqst probable kernel widthsand most probable ppg detectofEG&G Ortec BE-012-025-100with an active
hidden imageh, we calculate thenaximum posteriofMAP)  area of 25 mm and a nominal resolution of 12 keV FWHM
solution fromf=f(h,b). for 5.486 MeV «a particles was used. The actual noise width
The factor that favors the simplest model is called “Oc- of the detector-preamplifier-amplifier chain was determined
cam’s razor.” The Bayes theorem does recognize simplicitywith a test pulser to be about 13 keV FWHM. No efforts to
as one component of the inference. The quantity that goverrachieve a better resolution were performed. The thickness of

H=BTATdiag 1/0?)AB+diag a/h). (18



55 ENHANCEMENT OF THE ENERGY RESOLUTION IN ION. .. 6671

T T T r Y T r line in Fig. 1 is the reconstruction of the apparatus-

3000 | i . broadening function and was obtained with the described
recanstruction Bayesian analysis, using the adaptive kernel approach. For
2500 | — data it . the matrixA we have to choose the unity matrix because we

want to exploit only the smoothing property of the adaptive
kernel approach.

£ 2000 ®Cu (70.1%™, 69.2%") | With the best estimate for the apparatus-broadening func-
§ tion, we are now able to deconvolve the Cu spectrum. This is
@ 1500 | Co 1 also shown in Fig. 1. The thickness of the Cu layer was
T . 1 1.5x10% atoms/cnt. The energy of the backscattered
1000 | ®Cu (29.9%", 30.8%"")1 “He-ions from Cu is about 2029 keV, which is very close to
the energy of 1990 keV ofHe backscattered from Co, so we
500 can use the same apparatus function. The apparatus function
is energy dependent, but only varies slowly with eneigge
o | below). After deconvolution, the two isotope$°Cu and
1540 1560 1580 1600 1620 1640 1660 %Cu are clearly resolved. The FWHM of the dominant
Channel v 3Cu peak after deconvolution is 2.6 keV, which is about 8

FIG. 1. RBS £ thin C d Cu fi Si sub times better than the achieved experimental resolution and
- spectra of thin Co and Cu films on a Si substrate¢, . oy 4nd any conceivable experimental resolution with

measured with 2.6 MeVfHe at 165°. The Cu spectrum is decon- miconductor detectors. Th maller kK BEU i
volved with the apparatus-broadening function obtained from theomiconductor detectors. € smaller pea uis

Co spectrum. The two Cu isotopes are clearly resolved with a meas-“ghtl_y broader because the signal-to-noise ratio is lower,
sured abundance®) very close to the natural abundanddty,  resulting in less structure. The measured abundances of the

Energy calibration: 1.19 keV/channel. isotopes are 7010/83CU and 29.9%650U. This has to be
compared with the natural abundance of 69.586u and

the entrance Au electrode of the detector is 4aglcm?  30.8% ®°Cu.

(1.2x 10" atoms/cnt). It should be noted that only the measured and recon-

structed apparatus function and no additional prior informa-

tion, such as knowledge of the existence of two peaks, peak

positions, peak area ratios, or whatever, was used for the
The apparatus-energy-broadening function has to be deleconvolution. The eDOF as calculated from Et4) is

termined simultaneously with the spectrum we are interested4.7. This value results mainly from the 14 cells spanning

in. This is done by measuring the RBS spectra of a thinthe two peaks.

cobalt layer on a Si substrate. Co is chosen, since it is isoto- A comparison of the MAP solutiorh(ﬁ B) and the mean
pically pé”e' The thickness of the Co'layer was chosen'to bgolu'fion(f}, with the confidence intervalXf)?, is depicted
1.5< 10 atoms/cnt (0.75 nm to obtain sufficient intensity in Fig. 2. The mean solution is slightly smoother compared

as 'IY\;\ee” :ﬁer;eg|Ilgiasleo;nyhlgpilﬁczﬁt;erlgga backscattetee to the MAP solution, reflecting the skewness of the posterior
9y g rE)robability density. Notice that the two solutions are only

ions when penetrating the Co layer is about 1 keV for eac Litt ¢ : t th ti rant . f
direction. The energy-loss straggling of thide ions is about Iiterent ways to represent the most important properties o

1 keV in Bohr approximation. For an ideal apparatus anqthe, pqsterior .probability_densit_y. The twq prgsentations co-
detector with no intrinsic energy broadening, the Co backIncide |'f the signal-to-noise ratio goes to !nf!n|ty. The confi-
scattering spectrum should therefore have a width of about §ence interval represents1 standard deviation of the pos-
keV, which is much lower than the actual detector resolutionterior probability density.

The measured backscattering spectrum of the Co layer is The dashed line in Fig. 2 is the convolution of the decon-
shown in Fig. 1. The energy calibration gives 1.19 keV/volved spectrum with the apparatus function.
channel. The width of the Co peak is about 19 keV FWHM A more challenging example, which also shows the reso-
due to the different energy-broadening contributions: 13 keMution limitations for a given signal-to-noise ratio, is a thin
due to electronic noise, about 4 keV due to energy-loss strad=e film on Si, which is depicted in Fig. 3. The Fe film thick-
gling in the Au entrance electrode, about 6 keV due toness was 1 10 atoms/cnf. Whereas the two prominent
energy-loss straggling in the dead layer of the detef@yr  isotopes,>*Fe and *®Fe, can clearly be resolved, the third
about 6 keV due to the statistics of electron-hole pair creisotope,>Fe, is only indicated in the high-energy tail of the
ation [2], about 3 keV due to energy loss and energy-losgnost prominent peak. The measured abundances of the iso-
straggling in the Co layer, and about 10 keV due to the initiattopes are 8.1%‘Fe and 91.9% for the joined®Fe and
beam-energy straggling and geometrical-energy straggling’’Fe peaks. This has to be compared with the natural abun-
The peak is nonsymmetric and non-Gaussian mainly in thelance of 5.9%°Fe and(91.6% + 2.29% for “%Fe and
wings of the distribution. 5’Fe. The isotope®Fe, with a natural abundance of 0.3%, is

In the first step, we have to reconstruct the apparatusot visible in this measurement and would require an im-
function from the measured data of the Co layer. This reconproved signal-to-noise ratio.
struction is necessary because the measured data suffer fromBesides the separation and quantification of different
statistical fluctuations due to the number of counts. The solignasses, a common task in RBS analysis is the determination

IV. RESULTS AND DISCUSSION
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3000 ® data E
— MARP solution
----- data fit
—— mean solution with confidence interval
2000 J
bz}
g FIG. 2. The MAP solution and the mean so-
8 lution, with the confidence interval as two presen-
tations of the most important properties of the
posterior probability density.
1000 | .
0 ot . R
1580 1590 1600 1610 1620 1630 1640

Channel

of depth profiles. To demonstrate the achievable increase ioverlap more and more in larger target depths. For thick
depth resolution, a Co-Au multilayer on a Si substrate, contargets, the effect of energy-loss straggling becomes the
sisting of six layers of Au and six layers of Co with a layer dominant factor that determines and limits the depth resolu-
thickness of about 8:810'® atoms/cn? each, is decon- tion.

volved with the Co(Au) apparatus-broadening functions, The inset in Fig. 4 shows the two nearly identical
which are measured individually with thin films, as describedapparatus-broadening functions from Co and Au. Note the
above. The measured and deconvolved spectra are shownhigh-energy tail appearing in both reconstructions. This is
Fig. 4. The resolution of the six single layers of each con-most likely due to the energy distribution of the incident
stituent is significantly enhanced, and the layers can be sep@ns. The small deviation at the low-energy side is an effect
rated. The width of the peaks increases for larger targedf the different stopping powers in Co and Au. The Co
depths due to energy-loss straggling in the target. Whereas apparatus-broadening function was shifted by 213 channels
the target surface the Au layers can be clearly separated, théy coincide with the Au function.

. . . : 15000 T . . -
2500 T * data
e data i — reconstruction
—— reconstruction Co-Au multilayer ==~ data fit
e data fit
2000 | . Au
10000 | ' w h
@ . @ — Au
£ 1500 | Fe (91.6%") ' 5 e
3 <]
o [&]
2 2 '
o 1100 1150
T 4000 | +(91.9%%) . T Channel
5000 | T
500 N, TFe (2.2%") .
54 oxp Lit, » Co
Fe (8.1%°,5.9%") *Fo (0.3%"
y | | pYVYYy O
1520 1540 1560 1580 1600 800 9800 1000 1100
Channel Channel

FIG. 3. RBS spectrum of a thin Fe film on a Si substrate, mea- FIG. 4. RBS spectra of a Co-Au multilayer film on a Si sub-
sured with 2.6 MeV*He at 165°. The Fe spectrum is deconvolved strate, measured with 1.5 Me%He at 165°. The CdAu) part of
with the apparatus-broadening function obtained from the Co spedhe spectrum is deconvolved with the apparatus-broadening func-
trum. The black lines indicate the theoretical positions of the 4 Fdion obtained from a spectrum of a thin GAu) layer. The inset
isotopes. The isotope¥'Fe and>®Fe are clearly resolved with a shows the two nearly identical apparatus-broadening functions from
measured abundancé*f) very close to the natural abundance Co (Au). The Co apparatus-broadening functions is shifted by 213
(4'Yy; the isotope®™Fe is hardly resolved. channels to coincide with the Au function.
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V. CONCLUSIONS For thick films, the energy dependence of the apparatus
The energy resolution in ion-beam experiments, withfunction, due to the response function of a semiconductor
detector, may become a limiting factor for deconvolution.

MeV ions such as Rutherford backscattering, is limited by q luti h d d
the intrinsic energy resolution of the detector and the energ))—zor a proper deconvolution, the energy-dependent apparatus

broadening function of the whole apparatus, thus limiting thgUnction must be known with great accuracy. Fortunately,
energy and depth resolution in ion-beam experiments. ThE® €nergy dependence of the energy broadening is relatively
apparatus-energy-broadening function can be measured asgall, so the described method also works for thicker films
specific energy by backscattering from thin films with film @s long as the apparatus function does not change signifi-
thicknesses in the range of fGatoms/cn? of monoisotopic ~ cantly. For larger energy intervals, the apparatus function has
elements, such as cobalt or gold. The knowledge of théo be measured at different energies to allow deconvolution.
apparatus-energy-broadening function allows the deconvolu- The described method allows the deconvolution of the
tion of measured backscattering spectra by means of Bay@nergy-broadening contributions of the detector, electronic
sian probability theory and the entropic prior to obtain thenoise, geometrical-energy straggling, and energy straggling
most probable solution. An enhancement of the energy res@f the incident beam. In larger depths, the broadening con-
lution by a factor of 8 in Rutherford backscattering analysistribution due to energy-loss straggling and multiple scatter-
of thin films, resulting in an energy resolution of about 2.5ing becomes dominant and results in a decrease of the depth
keV with semiconductor detectors, is obtained. The energyesolution. The deconvolution of the effects of energy-loss
resolution before deconvolution was about 20 keV. The destraggling and multiple scattering seems possible; however,
convolution allows the separation of the isotog86u and an accurate theoretical description of these energy-
5Cu or %Fe and®®Fe in thin films with 2.6 MeV*He ions  broadening contributions with an accuracy of the order of

at a scattering angle of 165°. percent is necessary.
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