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Enhancement of the energy resolution in ion-beam experiments
with the maximum-entropy method

R. Fischer, M. Mayer, W. von der Linden, and V. Dose
Max-Planck-Institut fu¨r Plasmaphysik, EURATOM Association, Boltzmannstrasse 2, D-85748 Garching, Germany

~Received 22 January 1997!

In ion-beam experiments with MeV ions, the energy resolution of the detector and the energy spread of the
incident ion beam restrict the energy and depth resolution. It is possible to deconvolve the measured spectra if
the energy transfer function of the apparatus is known. However, this leads to an ill-posed problem. The
Bayesian probability theory allows one to tackle consistently such types of problems. Using the maximum-
entropy prior, it is possible to obtain the probability distribution for the desired energy and depth profiles. An
enhancement of the energy resolution by a factor of 8 in Rutherford backscattering analysis of thin films,
resulting in an energy resolution of about 2.5 keV with semiconductor detectors, is obtained.
@S1063-651X~97!09006-5#

PACS number~s!: 02.50.2r, 07.05.Kf, 79.20.Rf
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I. INTRODUCTION

In most ion-beam experiments, semiconductor detec
such as silicon-surface barrier detectors or particle-implan
and passivated silicon~PIPS! detectors are used for the d
tection and energy analysis of backscattered or recoiled
ticles. Semiconductor detectors are small, relatively che
and easy to use. The introduction of semiconductor detec
has made ion-beam analysis a powerful and widely u
method in material analysis. However, the major disadv
tage of semiconductor detectors is their limited energy re
lution, typically of about 12–15 keV full width at half maxi
mum ~FWHM!, thus limiting the mass and depth resolutio
in ion-beam experiments.

The apparatus-induced energy resolution in ion-beam
periments is determined by~a! the energy resolution of the
detector;~b! the electronic noise of the detector-preamplifi
system;~c! the energy spread of the incident beam; and~d!
the kinematic energy spread due to geometry~solid angle of
detection, beam spot size!. The electronic noise contributio
of the detector-preamplifier system is typically about 5 k
for a well-designed system, but can be lowered to about
keV with a cryogenic detector-preamplifier system@1#. The
kinematic energy spread can be reduced by a small b
spot size and a small detector solid angle. A small so
angle, however, increases the fluence and time necessar
a measurement with sufficient statistics, so that some c
promise has to be accepted. The energy spread of the
dent beam is hard to determine, but can be assumed to b
the order of aboutDE/E<531023.

The major contribution to the energy broadening visib
in experimentally determined spectra is due to the semic
ductor detector. For an ideal detector, the statistical distr
tion of the output pulses would have zero variance for in
dent monoenergetic particles with energyE0. Due to
electronic energy-loss straggling in the dead layer of the
tector, thickness variations of the dead layer, and the st
tics of electron-hole pair creation, the response function o
semiconductor detector always has nonzero variance@2#. The
particle energy is statistically distributed between electro
551063-651X/97/55~6!/6667~7!/$10.00
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excitation and ionization and nonelectronic energy losses
energy transfer to silicon atoms. Due to this statistical nat
of electron-hole pair creation, the physical limit for the res
lution of PIPS detectors without a dead layer would be ab
6 keV FWHM for 3-MeV 4He particles@2#. For detectors
with a dead layer, an energy resolution of about 8 k
FWHM was achieved@2#, which is quite close to the physi
cal limits.

A much better energy resolution of the order
DE/E5531024 can be obtained with a magnetic spe
trograph, such as the Munich Q3D magnetic spectrogr
@3#. However, a magnetic spectrograph is large~in the range
of meters! and therefore expensive.

The different contributions to the energy broadening c
be summarized in a transfer function of the whole syste
the apparatus function. The measured spectrumf̃ (E) is
given by the convolution

f̃ ~E!5E
2`

`

f ~E8!A~E2E8!dE8, ~1!

where f (E) is the spectrum that would be measured with
ideal system with no intrinsic energy broadening andA(E) is
the apparatus function. Iff (E) andA(E) are known, it is
simple to calculate the measured spectrumf̃ (E). This con-
volution is performed by all programs for the simulation
backscattering spectra, such asRUMP @4#. Mostly, a Gaussian
apparatus function is used. The variance of the Gaussia
adjusted for best fit to the measured spectrum.

The reverse and more interesting way, however, i.e.,
determination of the deconvolved spectrumf (E) from the
measured spectrumf̃ (E) and the apparatus functionA(E),
is not trivial at all. This problem is ill-posed, and some for
of regularization is needed to recoverf (E). A recently pub-
lished paper for resolution correction of Rutherford bac
scattering spectroscopy~RBS! spectra reviews the quality o
a few methods for dealing with inversion problems@5#. A
consistent probabilistic theory to obtain unbiased res
from incomplete or noisy data is provided by the Bayes
probability theory. Often, it is called the maximum-entrop
6667 © 1997 The American Physical Society
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~ME! method, though the Bayesian calculus is the corr
theory for logical inference and ME is important for assig
ing prior probabilities. The Bayesian probability theory, wi
the ME method, has become a powerful and widely used
in image processing and data analysis during the past
years@6–10#. We have used the ME method for the deco
volution of measured RBS to improve the energy resoluti

II. BAYESIAN PROBABILITY THEORY
AND MAXIMUM ENTROPY

The direct inversion of the intrinsic spectrumf (E) is an
ill-posed problem if the eigenvalue spectrum of the appara
transfer functionA varies over orders of magnitude. A com
monly used approximation is a Gaussian transfer funct
which illustrates the ill-posed nature of the problem. T
direct inversion leads to meaningless results, since the st
tical error of the experimental data is amplified by the
verse of the small eigenvalues, which results in artific
structures and even negative RBS intensities in the de
volved spectrum. To overcome this problem and to sepa
the signal from the noise, the statistical nature of the e
has to be taken into account properly. We want to find
most noncommittal reconstruction compatible with the da

A self-consistent mathematical tool for this task is giv
by the Bayesian probability theory, which provides a gene
and consistent frame for logical inference. The Bayes
probability theory allows one to exploit any type of testab
information, such as noisy experimental data, expecta
values, positivity constraints, or other forms of prior know
edge. An important class of problems comprises the dete
nation of positive and additive distribution~PAD! functions,
such as the RBS spectrum. The most uninformative prior
a PAD is the entropic prior@11#. The Bayesian probability
theory combined with the entropic prior is referred to
quantified maximum entropy~QME!, which has been ap
plied successfully to various data-analysis problems@6–10#.
The mathematical and numerical details of the QME pro
dure are explained in great detail in@9#. Here, we will merely
outline the key ideas of the QME procedure and introduc
recently developed advantageous extension of QM
namely, the adaptive kernel method.

The goal is to determine theposterior probability density
P( f ud,s,I ) for the RBS spectrumf j at theN energiesEj ,
givenNd experimental datadi , the respective errorss i , and
further prior knowledge summarized inI . The notation with
the vertical bar denotes conditional probabilities, based
either empirical or theoretical information and further bac
ground informationI . The posterior probability density rep
resents all the information necessary to decide how rea
able a solution f j is. It allows one to determine man
quantities of interest, such as the posterior mode resultin
the most probable solution, the mean^ f i&
5* f jP( f ud,s,I ) dNf , confidence intervals, etc. The Baye
theorem relates the as yet unknownP( f ud,s,I ) to quantities
that are known, namely, thelikelihood probability density
P(du f ,s,I ) and theprior probability density P( f uI ), via

P~ f ud,s,I !5
P~du f ,s,I !P~ f uI !

P~duI !
. ~2!
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The historical terms ‘‘posterior’’ and ‘‘prior’’ have a logical
rather than a temporal, meaning. They simply mean ‘‘wit
and ‘‘without’’ the new data taken into account. The Bay
theorem is a consequence of the two forms of the prod
rule P(ABuC)5P(AuBC)P(BuC)5P(BuAC)P(AuC),
whereA, B, andC are propositions. The theorem is fund
mental to all scientific work, as it provides a formal rule f
updating knowledge in the light of new data or learning fro
observations. In the Bayesian probability theory,probabili-
ties are not frequencies, although frequency arguments a
often important for assigning priors and frequency estima
can be derived from Bayesian probabilities.

The probability densityP(duI ) is a normalization con-
stant because the problem is formulated for given data.
likelihood function describes the error statistics of the e
periment. In the present case of a counting experiment wi
large number of counts, we are dealing with a Gaussian l
lihood function,

P~du f ,s,I !5
1

) i51
Nd A2ps i

expS 2
1

2
x2D , ~3!

where

x25(
i51

Nd S di2( j51
N Ai j f j
s i

D 2, s i5Adi . ~4!

The uninformative priorP( f uI ) for a PAD is the entropic
prior

P~ f ua,I !5
1

Z
exp~aS! ~5!

S5(
j51

N

f j2mj2 f j lnS f jmj
D , ~6!

where S is the information-theory entropy or informatio
divergence relative to the default modelmj . The prior has to
be normalizedZ5*dNf P( f ua,I ). We use an uninformative
flat default model,mj5c, where the most probable value fo
c is given by minimizingx2. The regularization paramete
a is a nuisance parameter that has to be marginali
P( f uI )5*daP( f ua,I )P(a), where the uninformative prior
for a is given by Jeffreys’ priorP(a)}1/a. A commonly
used method of handling this improper prior is the eviden
approximation with the steepest-descent method@11,12#. Re-
cently, we showed that for some inversion problems the c
rect marginalization of a in some sensible range
@amin ,amax#, is compelling@10#.

In addition to the properties of a PAD, the backgrou
knowledge I summarizes model assumptions, such as
discretization scheme of the spectrum. The discretiza
scheme accounts for the smallest local resolution poss
The number of grid cells defines the number of degrees
freedom~DOF! of the image parametrization. To be sure n
to lose information, a sufficiently fine grid has to be chos
A disadvantage of a fine grid is the overfitting of the da
noise. Accordingly, the grid has to be incorporated into
Bayesian analysis, either by choosing the best grid via mo
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selection or by marginalization over all possible grids. It
expected that the solution has local smoothness and s
tures only if they are supported by the data. A smooth so
tion is expected when arbitrary permutation of the celli
results in loss of information. This is definitely the case
RBS spectra or, in general, for any image. Alternatively,
stead of searching for the optimal cell size distribution
may achieve smoothness on a fine grid by introducing c
relations between neighboring cells. Though the DOF rem
unchanged, the effective DOF~eDOF! are reduced. A mea
sure of the eDOF is given below. Spatial smoothing a
regularizing technique is often applied to ill-posed invers
problems by adding a functional containing some derivat
of the solution multiplied by a Lagrange parameter to
misfit x2, e.g.,x21l* f 9(x)2dx. One has to find a criterion
for choosing the strength of the regularizationl. But the
existence of exactly one ‘‘optimal’’l is not rigorous. In
addition, the optimall depends on the subdivision of th
spectrum. For example, the strength of regularizationl of a
spectrum with an intense narrow peak and a weak broa
peak differs from the result obtained if we join the regula
ized two spectra, each with one peak. In the Bayesian p
ability theory, such a regularization parameter is a nuisa
parameter that has to be marginalized. Furthermore, ins
of using a constant overall smoothing property, we need
cal smoothness, which allows a high smoothness leve
unstructured regions of the spectrum where only backgro
occurs, and a low smoothness level where structures a
Local smoothness of the imagef is not included in standard
ME methods because the entropic prior contains no corr
tion between the cells. An arbitrary permutation of the ce
results in the same entropy, whereas the spectrumlooks quite
different.

We impose smoothness onf through a convolution of a
hidden densityh with a smoothing kernel functionalB:

f ~x!5E dyBS x2y

b~y! Dh~y!. ~7!

Note that the local kernel widthb(y) varies with y. The
shape and width distributionb(y) of the kernelB have to be
determined by Bayesian methods. Knowing the normali
tion, the mean, and the standard deviation ofB, the kernel
functional form has to be Gaussian according to the M
principle @13#:

BS x2y

b~y! D5
1

A2pb~y!
expF2

1

2S x2y

b~y! D
2G . ~8!

We do not expect the shape of the kernel functional to ma
greatly, but in some applications the infinite range of
Gaussian may not apply. For example, if we expect sh
edges in an image, the prior information would favor a co
pact kernel, such as a truncated parabola@14#.
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In the Bayesian approach, the nuisance parametersh and
b have to be marginalized:

P~ f ud,s,I !5E dNh dNb P~ f ,h,bud,s,I !

}E dNh dNb d~ f2B* h!P~duh,b,s,I ! ~9!

3P~hub!P~b!. ~10!

For the prior probability densityP(hub), we use the entropic
prior as was previously done forf @15#,

P~hub,a!5P~hua!5F)
i

N S a

2phi
D 1/2Gexp@aS~h!#,

~11!

with the entropy

S~h!5(
i

N

hi2mi2hi lnS himi
D . ~12!

Note the measuredNh/) ihi
1/2, which has to be applied to

integrals of the probability overh space@15#. The prior is
independent ofb and ensures positivity inf . As shown
above, the regularization parametera has to be marginal-
ized. For simplicity, we use the historic ME approach, whe
a is chosen such thatx2/Nd'1 @16#. In our earlier papers, it
is shown that historic ME provides quite the same regu
ization compared with the marginalization overa, whereas
the evidence approximation tends to over-fit the data@17#. At
any rate, we observed that the importance of the prio
strongly reduced when using the adaptive kernel approa
The range over whicha has to be varied to observe signifi
cant changes in the image exceeds by far the difference
a of the various approaches.

The prior probabilityP(b) has to reflect all the informa
tion we have about the kernel widthsb. We know the scale
of b: the upper limitbu of each kernel widthbi is given by
the total image range~overall smoothing!, and the lower
limit bl is given by the value ofbi , which gives negligible
contributions to neighboring image cells~no smoothing!. In
addition, we favor a blur width distribution where blu
widths from neighboring cells differ by no more than on
cell width. Otherwise the data would be artificially separat
into background and signals, although in some cases
may be advantageous. This also enforces smooth variat
in b. We chose the Gaussian prior for the derivative ofb,
measured in cell units, with a standard deviation of one
bP@bl ,bu#:

P~b!}H expF20.5(
i

~bi2bi21!
2G ~bP@bl ,bu# !

0 ~elsewhere!.
~13!

The Bayesian analysis yields the entire probability dis
bution ~10!, which is, however, somewhat complicated d
to the presence of thed function. This is of minor impor-
tance, since our interest usually focuses on expectation
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ues of some functional off , for example, the posterior mea
^ f & and the posterior variancê(D f )2&. Though the evalua-
tion of the multidimensional integrals is cumbersome, t
can be tackled by Monte Carlo importance sampling~see, for
example,@18#!. Alternatively, the different natures ofh and
b can be exploited and the integration overh andb can be
split. The hidden imageh represents the signal intensit
whereas the set of kernel widthsb characterizes the com
plexity of the model. This can easily be seen in the lim
b→` andb→0. Forb→`, the image is described solely b
the mean of the densityh with an eDOF of one, whereas, fo
b→0, the kernel goes into thed functional, which results in
f (x)5h(x). We obtain the conventional result where the im
age is reconstructed pointwise with an eDOF ofN. Blur
widths between the two limits result in local smoothing w
locally varying eDOF.

A measure for the eDOF of the model parametersb is
given by

eDOF5(
i

Aeigenvaluei~BTB!. ~14!

The largest eigenvalue is one, due to normalization ofB. For
b→0 the eDOF isN and forb→` the eDOF is one. The
large eigenvalues define eigenvectors that are essentia
describing the data, and the small eigenvalues define ei
vectors describing insignificant contributions due to noise

The splitting of the integration is readily done with th
evidence approximation@11,12#, which can be applied if the
probability for the kernel widths, given the dataP(bud), is
strongly peaked at some valueb̂, P(bud)'d(b2b̂):

P~ f ud,s,I !}E dNh d~ f2B̂* h!P~duh,b̂,s,I !P~huI !.

~15!

The optimal kernel widthsb̂ are determined by maximizing
the marginalP(bud):

P~bud!}E dNh P~duh,b!P~h!P~b!. ~16!

The multidimensional integrals are routinely determined
the steepest-descent approximation, where ln@P(duh,b)P(h)#
is expanded up to second order about its maximumĥ. The
resulting Gaussian integral yields

P~bud!'P~b!P~duĥ,b!P~ ĥ!det2
1
2H, ~17!

whereH is the Hessian of ln@P(duh,b)P(h)#. In the present
case of a linear model,d5A* f , the Hessian can easily b
calculated:

H5BTATdiag~1/s2!AB1diag~a/h!. ~18!

Given the most probable kernel widthsb̂ and most probable
hidden imageĥ, we calculate themaximum posterior~MAP!

solution from f̂5 f (ĥ,b̂).
The factor that favors the simplest model is called ‘‘O

cam’s razor.’’ The Bayes theorem does recognize simplic
as one component of the inference. The quantity that gov
s

-

for
n-

y

y
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Occam’s razor is the volume of the prior probability cover
by the high-likelihood region@19#. Two cases have to be
distinguished: The models differ in the number of paramet
~DOF!, e.g., the number of grid cells, or the models have
constant DOF but differ in the values of additional mod
parameters determining the eDOF, as in the present cas
the adaptive kernels with the additional parametersb. In the
former case, the prior probability density of the paramet
depends on the manifold of the parameter space, where
prior decreases as the DOF increases. In the latter case
volume of the hypothesis space is constant. Neglecting
entropic contribution, Occam’s razor is determined by t
volume of the likelihood-probability density, which depen
implicitly on the model parameters. In the adaptive kern
approach, the DOF is given by the number of image ce
N and the model parametersb define the complexity of the
model ~eDOF!. The volume of the prior probability covere
by the high-likelihood region is already calculated in E
~17!. The BTB-term in the Hessian reflects the smoothi
power of the adaptive kernels. The determinant ofH de-
creases as the kernel widths increase.

We are mainly interested in the posterior expectat
^ f l& and point estimates of the variance of the posterior pr
ability density var(f l)5^ f l

2&2^ f l&
2. The variance describing

the uncertainty of the imagef is correlated with the kerne
width. To illustrate this, consider a mock data set, consist
of N samples of a constant, distorted by a constant no
level s. In the limit b→0, where no smoothing occurs, th
variance of the uncorrelated image points iss2. In the limit
b→`, where overall smoothing occurs, the data is descri
by the mean value, and the variance iss2/N ~the variance of
the mean!. Between the two limiting cases, the variance
approximately given bys2/b. Thus, unstructured data re
gions that can be described with large kernel widths resu
reconstructions with a low error level.

To summarize the ingredients of the reconstructing pro
dure in the Bayesian framework, we have to start with
Bayes theorem, assigning the likelihood probability from t
error statistics of the experiment and the prior probability
a positive additive distribution. In addition, we have to intr
duce the adaptive kernels, to take into account our ba
ground information about the correlated cells. The nuisa
parameters have to be marginalized. The numerical calc
tions are rather cumbersome, but do not exceed the exp
mental efforts.

III. EXPERIMENT

The following measurements were performed at the
MeV Van-de-Graff accelerator at the Max-Planck-Institut f¨r
Plasmaphysik in Garching. The incident beam of 1.5 MeV
2.6 MeV 4He was collimated to 0.530.5 mm2. Backscat-
tered particles were detected at a scattering angle of 1
The solid angle of the detector is 1.0831023 sr. A standard
PIPS detector~EG&G Ortec BE-012-025-100! with an active
area of 25 mm2 and a nominal resolution of 12 keV FWHM
for 5.486 MeVa particles was used. The actual noise wid
of the detector-preamplifier-amplifier chain was determin
with a test pulser to be about 13 keV FWHM. No efforts
achieve a better resolution were performed. The thicknes
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the entrance Au electrode of the detector is 40.0mg/cm2

(1.231017 atoms/cm2).

IV. RESULTS AND DISCUSSION

The apparatus-energy-broadening function has to be
termined simultaneously with the spectrum we are interes
in. This is done by measuring the RBS spectra of a th
cobalt layer on a Si substrate. Co is chosen, since it is iso
pically pure. The thickness of the Co layer was chosen to
1.531016 atoms/cm2 ~0.75 nm! to obtain sufficient intensity
as well as negligible multiple scattering.

The energy loss of the incoming and backscattered4He
ions when penetrating the Co layer is about 1 keV for ea
direction. The energy-loss straggling of the4He ions is about
1 keV in Bohr approximation. For an ideal apparatus a
detector with no intrinsic energy broadening, the Co bac
scattering spectrum should therefore have a width of abou
keV, which is much lower than the actual detector resolutio

The measured backscattering spectrum of the Co laye
shown in Fig. 1. The energy calibration gives 1.19 ke
channel. The width of the Co peak is about 19 keV FWH
due to the different energy-broadening contributions: 13 k
due to electronic noise, about 4 keV due to energy-loss str
gling in the Au entrance electrode, about 6 keV due
energy-loss straggling in the dead layer of the detector@2#,
about 6 keV due to the statistics of electron-hole pair c
ation @2#, about 3 keV due to energy loss and energy-lo
straggling in the Co layer, and about 10 keV due to the init
beam-energy straggling and geometrical-energy straggl
The peak is nonsymmetric and non-Gaussian mainly in
wings of the distribution.

In the first step, we have to reconstruct the appara
function from the measured data of the Co layer. This rec
struction is necessary because the measured data suffer
statistical fluctuations due to the number of counts. The so

FIG. 1. RBS spectra of thin Co and Cu films on a Si substra
measured with 2.6 MeV4He at 165°. The Cu spectrum is decon
volved with the apparatus-broadening function obtained from
Co spectrum. The two Cu isotopes are clearly resolved with a m
sured abundance (exp) very close to the natural abundance (Lit).
Energy calibration: 1.19 keV/channel.
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line in Fig. 1 is the reconstruction of the apparatu
broadening function and was obtained with the describ
Bayesian analysis, using the adaptive kernel approach.
the matrixA we have to choose the unity matrix because
want to exploit only the smoothing property of the adapti
kernel approach.

With the best estimate for the apparatus-broadening fu
tion, we are now able to deconvolve the Cu spectrum. Thi
also shown in Fig. 1. The thickness of the Cu layer w
1.531016 atoms/cm2. The energy of the backscattere
4He-ions from Cu is about 2029 keV, which is very close
the energy of 1990 keV of4He backscattered from Co, so w
can use the same apparatus function. The apparatus fun
is energy dependent, but only varies slowly with energy~see
below!. After deconvolution, the two isotopes63Cu and
65Cu are clearly resolved. The FWHM of the domina
63Cu peak after deconvolution is 2.6 keV, which is abou
times better than the achieved experimental resolution
far beyond any conceivable experimental resolution w
semiconductor detectors. The smaller peak of65Cu is
slightly broader because the signal-to-noise ratio is low
resulting in less structure. The measured abundances o
isotopes are 70.1%63Cu and 29.9%65Cu. This has to be
compared with the natural abundance of 69.2%63Cu and
30.8% 65Cu.

It should be noted that only the measured and rec
structed apparatus function and no additional prior inform
tion, such as knowledge of the existence of two peaks, p
positions, peak area ratios, or whatever, was used for
deconvolution. The eDOF as calculated from Eq.~14! is
14.7. This value results mainly from the 14 cells spann
the two peaks.

A comparison of the MAP solutionf (ĥ,b̂) and the mean
solution ^ f &, with the confidence interval (D f )2, is depicted
in Fig. 2. The mean solution is slightly smoother compar
to the MAP solution, reflecting the skewness of the poste
probability density. Notice that the two solutions are on
different ways to represent the most important properties
the posterior probability density. The two presentations
incide if the signal-to-noise ratio goes to infinity. The con
dence interval represents61 standard deviation of the pos
terior probability density.

The dashed line in Fig. 2 is the convolution of the deco
volved spectrum with the apparatus function.

A more challenging example, which also shows the re
lution limitations for a given signal-to-noise ratio, is a th
Fe film on Si, which is depicted in Fig. 3. The Fe film thick
ness was 1.731016 atoms/cm2. Whereas the two prominen
isotopes,54Fe and 56Fe, can clearly be resolved, the thir
isotope,57Fe, is only indicated in the high-energy tail of th
most prominent peak. The measured abundances of the
topes are 8.1%54Fe and 91.9% for the joined56Fe and
57Fe peaks. This has to be compared with the natural ab
dance of 5.9%54Fe and ~91.6% 1 2.2%! for 56Fe and
57Fe. The isotope58Fe, with a natural abundance of 0.3%,
not visible in this measurement and would require an i
proved signal-to-noise ratio.

Besides the separation and quantification of differ
masses, a common task in RBS analysis is the determina
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FIG. 2. The MAP solution and the mean so
lution, with the confidence interval as two prese
tations of the most important properties of th
posterior probability density.
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of depth profiles. To demonstrate the achievable increas
depth resolution, a Co-Au multilayer on a Si substrate, c
sisting of six layers of Au and six layers of Co with a lay
thickness of about 8.331016 atoms/cm2 each, is decon-
volved with the Co~Au! apparatus-broadening function
which are measured individually with thin films, as describ
above. The measured and deconvolved spectra are show
Fig. 4. The resolution of the six single layers of each co
stituent is significantly enhanced, and the layers can be s
rated. The width of the peaks increases for larger tar
depths due to energy-loss straggling in the target. Where
the target surface the Au layers can be clearly separated,

FIG. 3. RBS spectrum of a thin Fe film on a Si substrate, m
sured with 2.6 MeV4He at 165°. The Fe spectrum is deconvolv
with the apparatus-broadening function obtained from the Co s
trum. The black lines indicate the theoretical positions of the 4
isotopes. The isotopes54Fe and 56Fe are clearly resolved with a
measured abundance (exp) very close to the natural abundanc
(Lit); the isotope57Fe is hardly resolved.
in
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overlap more and more in larger target depths. For th
targets, the effect of energy-loss straggling becomes
dominant factor that determines and limits the depth reso
tion.

The inset in Fig. 4 shows the two nearly identic
apparatus-broadening functions from Co and Au. Note
high-energy tail appearing in both reconstructions. This
most likely due to the energy distribution of the inciden
ions. The small deviation at the low-energy side is an effe
of the different stopping powers in Co and Au. The C
apparatus-broadening function was shifted by 213 chann
to coincide with the Au function.

-

c-
e

FIG. 4. RBS spectra of a Co-Au multilayer film on a Si sub
strate, measured with 1.5 MeV4He at 165°. The Co~Au! part of
the spectrum is deconvolved with the apparatus-broadening fu
tion obtained from a spectrum of a thin Co~Au! layer. The inset
shows the two nearly identical apparatus-broadening functions fr
Co ~Au!. The Co apparatus-broadening functions is shifted by 2
channels to coincide with the Au function.
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55 6673ENHANCEMENT OF THE ENERGY RESOLUTION IN ION- . . .
V. CONCLUSIONS

The energy resolution in ion-beam experiments, w
MeV ions such as Rutherford backscattering, is limited
the intrinsic energy resolution of the detector and the ene
broadening function of the whole apparatus, thus limiting
energy and depth resolution in ion-beam experiments.
apparatus-energy-broadening function can be measured
specific energy by backscattering from thin films with fil
thicknesses in the range of 1016 atoms/cm2 of monoisotopic
elements, such as cobalt or gold. The knowledge of
apparatus-energy-broadening function allows the deconv
tion of measured backscattering spectra by means of B
sian probability theory and the entropic prior to obtain t
most probable solution. An enhancement of the energy re
lution by a factor of 8 in Rutherford backscattering analy
of thin films, resulting in an energy resolution of about 2
keV with semiconductor detectors, is obtained. The ene
resolution before deconvolution was about 20 keV. The
convolution allows the separation of the isotopes63Cu and
65Cu or 54Fe and56Fe in thin films with 2.6 MeV4He ions
at a scattering angle of 165°.
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For thick films, the energy dependence of the appara
function, due to the response function of a semiconduc
detector, may become a limiting factor for deconvolutio
For a proper deconvolution, the energy-dependent appar
function must be known with great accuracy. Fortunate
the energy dependence of the energy broadening is relati
small, so the described method also works for thicker fil
as long as the apparatus function does not change sig
cantly. For larger energy intervals, the apparatus function
to be measured at different energies to allow deconvolut

The described method allows the deconvolution of
energy-broadening contributions of the detector, electro
noise, geometrical-energy straggling, and energy stragg
of the incident beam. In larger depths, the broadening c
tribution due to energy-loss straggling and multiple scatt
ing becomes dominant and results in a decrease of the d
resolution. The deconvolution of the effects of energy-lo
straggling and multiple scattering seems possible; howe
an accurate theoretical description of these ener
broadening contributions with an accuracy of the order
percent is necessary.
s
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